Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. Consequently, the role of enhanced horizontal resolution in improved process representation in all components of the climate system continues to be of great interest. Recent simulations suggest the possibility of significant changes in both large-scale aspects of the ocean and atmospheric circulations and in the regional responses to climate change, as well as improvements in representations of small-scale processes and extremes, when resolution is enhanced. The first phase of the High-Resolution Model Intercomparison Project (HighResMIP1) was successful at producing a baseline multi-model assessment of global simulations with model grid spacings of 25–50 km in the atmosphere and 10–25 km in the ocean, a significant increase when compared to models with standard resolutions on the order of 1° that are typically used as part of the Coupled Model Intercomparison Project (CMIP) experiments. In addition to over 250 peer-reviewed manuscripts using the published HighResMIP1 datasets, the results were widely cited in the Intergovernmental Panel on Climate Change report and were the basis of a variety of derived datasets, including tracked cyclones (both tropical and extratropical), river discharge, storm surge, and impact studies. There were also suggestions from the few ocean eddy-rich coupled simulations that aspects of climate variability and change might be significantly influenced by improved process representation in such models. The compromises that HighResMIP1 made should now be revisited, given the recent major advances in modelling and computing resources. Aspects that will be reconsidered include experimental design and simulation length, complexity, and resolution. In addition, larger ensemble sizes and a wider range of future scenarios would enhance the applicability of HighResMIP. Therefore, we propose the High-Resolution Model Intercomparison Project phase 2 (HighResMIP2) to improve and extend the previous work, to address new science questions, and to further advance our understanding of the role of horizontal resolution (and hence process representation) in state-of-the-art climate simulations. With further increases in high-performance computing resources and modelling advances, along with the ability to take full advantage of these computational resources, an enhanced investigation of the drivers and consequences of variability and change in both large- and synoptic-scale weather and climate is now possible. With the arrival of global cloud-resolving models (currently run for relatively short timescales), there is also an opportunity to improve links between such models and more traditional CMIP models, with HighResMIP providing a bridge to link understanding between these domains. HighResMIP also aims to link to other CMIP projects and international efforts such as the World Climate Research Program lighthouse activities and various digital twin initiatives. It also has the potential to be used as training and validation data for the fast-evolving machine learning climate models.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract Assessing the role of anthropogenic warming from temporally inhomogeneous historical data in the presence of large natural variability is difficult and has caused conflicting conclusions on detection and attribution of tropical cyclone (TC) trends. Here, using a reconstructed long-term proxy of annual TC numbers together with high-resolution climate model experiments, we show robust declining trends in the annual number of TCs at global and regional scales during the twentieth century. The Twentieth Century Reanalysis (20CR) dataset is used for reconstruction because, compared with other reanalyses, it assimilates only sea-level pressure fields rather than utilize all available observations in the troposphere, making it less sensitive to temporal inhomogeneities in the observations. It can also capture TC signatures from the pre-satellite era reasonably well. The declining trends found are consistent with the twentieth century weakening of the Hadley and Walker circulations, which make conditions for TC formation less favourable.more » « less
-
Abstract We propose a method for analyzing extremal behavior through the lens of a most efficient basis of vectors. The method is analogous to principal component analysis, but is based on methods from extreme value analysis. Specifically, rather than decomposing a covariance or correlation matrix, we obtain our basis vectors by performing an eigendecomposition of a matrix that describes pairwise extremal dependence. We apply the method to precipitation observations over the contiguous United States. We find that the time series of large coefficients associated with the leading eigenvector shows very strong evidence of a positive trend, and there is evidence that large coefficients of other eigenvectors have relationships with El Niño–Southern Oscillation.more » « less
-
Atmospheric rivers (ARs) are long, narrow synoptic scale weather features important for Earth’s hydrological cycle typically transporting water vapor poleward, delivering precipitation important for local climates. Understanding ARs in a warming climate is problematic because the AR response to climate change is tied to how the feature is defined. The Atmospheric River Tracking Method Intercomparison Project (ARTMIP) provides insights into this problem by comparing 16 atmospheric river detection tools (ARDTs) to a common data set consisting of high resolution climate change simulations from a global atmospheric general circulation model. ARDTs mostly show increases in frequency and intensity, but the scale of the response is largely dependent on algorithmic criteria. Across ARDTs, bulk characteristics suggest intensity and spatial footprint are inversely correlated, and most focus regions experience increases in precipitation volume coming from extreme ARs. The spread of the AR precipitation response under climate change is large and dependent on ARDT selection.more » « less
An official website of the United States government
